Potencial energético do resíduo do despolpamento do açaí sob diferentes condições de estocagem

Keywords: Moisture content, basic density, volatile matter, fixed carbon, ashes

Abstract

The investigation of the biomass quality in the fresh condition and after storing environmental conditions is necessary to support its usage for energy generation. In Amazonia, the waste produced from açaí depulping stands out because of its wide availability. This work aimed to evaluate if the different methods and sites of storage modify the physical, chemical, and energetic properties of the açaí waste and its potential for energetic purposes. The residues were collected at Macapá, Amapá state, in six different conditions: a fresh sample, obtained right after depulping, and five samples stored under different environmental conditions. After depulping, the açaí waste showed a moisture content of 103.8%, but the storage resulted in natural drying, reducing this property to up to 12.3%. Compared with the fresh waste (0.719 g cm-3), the basic density of the wasteland-dispersed biomass decreased significantly (0.279 g cm-3), which reduces the yield of combustion and pyrolysis. When the wastes were stocked, volatile materials raised from 65.29% to 75.62%, fixed carbon decreased from 34.70% to 23.09%, and ashes content reduced from 1.81% to up to 1.24%. Such modifications suggested the partial decomposition of chemical components that became volatile or leachable. Consequently, the storage decreased the higher heating value and the energy density of the wastes.  It was concluded that açaí waste storage by any condition, except for moisture content decreased, harmed its energetic potential.

Downloads

Download data is not yet available.

References

AMERICAN SOCIETY FOR TESTING MATERIALS. ASTM D 1762-84: standard test method for chemical analysis of wood charcoal. Filadélfia: ASTM, 2013.

AMORIM, F. S.; RIBEIRO, M. X.; PROTÁSIO, T. P.; BORGES, C. H. A.; COSTA, R. M. C. Produção de briquetes a partir de espécies florestais. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 10, p. 34-41, 2015.

ASADULLAH, M. Barriers of commercial power generation using biomass gasification gas: a review. Renewable and Sustainable Energy Reviews, v. 29, p. 201-215, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 14660: madeira – amostragem e preparação para análise. Rio de Janeiro: ABNT, 2004.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 11941: madeira - determinação da densidade básica. Rio de Janeiro: ABNT, 2003.

BRASIL. Ministério de Minas e Energia. Secretaria de Planejamento e Desenvolvimento Energético. Resenha Energética Brasileira. Brasília, DF, 2020.

BRASIL. Ministério de Minas e Energia. Empresa de Pesquisa Energética. Balanço Energético Nacional 2018. Brasília, DF, 2018.

BRITO, J.; BARRICHELO, L. Correlações entre características físicas e químicas da madeira e produção vegetal: 1. densidade e teor de madeira da madeira de eucalipto. Instituto de Pesquisas e Estudos Florestais, v. 14, n. 14, p. 9-20, 1977.

BUFALINO, L.; GUIMARÃES, A.; SILVA, B.; SOUZA, R.; MELO, I.; OLIVEIRA, D.; TRUGILHO, P. Local variability of yield and physical properties of açaí waste and improvement of its energetic attributes by separation of lignocellulosic fibers and seeds. Journal of Renewable and Sustainable Energy, v. 10, n. 5, p. 1-10, 2018.

COSTA, R.; PRATES, C. O papel das fontes renováveis de energia no desenvolvimento do setor energético e barreiras à sua penetração no mercado. Rio de Janeiro: BNDES, 2005. 30 p.

DEMIRBAS, A. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, v. 30, n. 2, p. 219–230, 2004.

DU, S.; CHEN, W.; LUCAS, J. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection. Bioresource Technology, v. 161, p. 333-339, 2014.

GARCIA, D. P.; CARASCHI, J. C.; VENTORIM, G.; VIEIRA, F. H. A.; PROTÁSIO, T. P. Comparative energy properties of torrefied pellets in relation to pine and elephant grass pellets. BioResources, v. 13, p. 2898-2906, 2018.

KAMBO, H. S.; DUTTA, A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy, v. 135, p. 182-191, 2014.

KUMAR, A.; KUMAR, N.; BAREDAR, P.; SHUKLA, A. A review on biomass energy resources, potential, conversion and policy in India. Renewable and Sustainable Energy Reviews, v. 45, p. 530-539, 2015.

MARQUES, D.; BRITO, A.; CUNHA, A.; SOUZA, L. Variação da radiação solar no estado do Amapá: estudo de caso em Macapá, Pacuí, Serra do Navio e Oiapoque no período de 2006 a 2008. Revista Brasileira de Meteorologia, v. 27, n. 2, p. 127-138, 2012.

MARQUES, T.; PINTO, L. Energia da biomassa de cana-de-açúcar sob influência de hidrogel, cobertura vegetal e profundidade de plantio. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 6, p. 680-685, 2013.

MEERBECK, K. V.; DEWIL, L. A. R.; LEMMENS, A. C. P.; HERMY, B. M. M. Biomass of invasive plant species as a potential feedstock for bioenergy production. Biofuels, Bioproducts & Biorefining, v. 9, n. 3, p. 273-282, 2015.

MUÑIZ, G.; LENGOWSKI, E.; NISGOSKI, S.; MAGALHÃES, W.; OLIVEIRA, V.; HANSEL, F. Characterization of Pinus spp. needles and evaluation of their potential use for energy. Cerne, v. 20, n. 2, p. 245-250, 2014.

OLIVEIRA, J. Investigação das etapas para o processo de produção de etanol de segunda geração a partir da biomassa do caroço de açaí (Euterpe oleracea). 2014. 228 f. Tese (Doutorado em Engenharia Química) - Universidade Estadual de Campinas/UNICAMP, Campinas, 2014.

PARIKH, J.; CHANNIWALA, S. A.; GHOSAL, G. K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, v. 84, n. 5, p. 487–494, 2005.

PROTÁSIO, T. de P.; SCATOLINO, M. V.; ARAÚJO, A. C. C.; OLIVEIRA, A. F. C. F.; FIGUEIREDO, I. C. R.; ASSIS, M. R.; TRUGILHO, P. F. Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood. BioEnergy Research, v. 12, p. 626–641, 2019.

PROTÁSIO, T. de P.; TRUGILHO, P. F.; SILVA, A. A. C. da; NAPOLI, A.; MELO, I. N. A. de; SILVA, M. G. da. Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil. Springer Plus, v. 3, n. 124, p. 1-14, 2014.

PROTÁSIO, P.; BUFALINO, L.; TONOLI, D.; JUNIOR, M.; TRUGILHO, P.; MENDES, L. Brazilian lignocellulosic wastes for bioenergy production: characterization and comparison with fossil fuels. BioResources, v. 8, n. 1, p. 1166–1185, 2013.

LIMA, M. D. R.; PATRÍCIO, E. P. S.; BARROS JUNIOR, U. de O.; ASSIS, M. R. de; XAVIER, C. N.; BUFALINO, L.; TRUGILHO, P. F.; HEIN, P. R. G.; PROTASIO, T. de P. Logging wastes from sustainable forest management as alternative fuels for thermochemical conversion systems in Brazilian Amazon. Biomass and Bioenergy, v. 140, p. 1-15, 2020.

SILVA, D. A.; MÜLLER, B. V.; KUIASKI, E. C.; ELOY, E.; BEHLING, A.; COLAÇO, C. M. Propriedades da madeira de Eucalyptus benthamii para produção de energia. Pesquisa Florestal Brasileira, v. 35, n. 84, p. 481-485, 2015.

SILVA, M. F.; FORTES, M. M.; SETTE JUNIOR, C. R., Characteristics of wood and charcoal from Eucalyptus clones. Floresta e Ambiente, v. 25, p. 1-10 , 2018.

SOLTANI, S.; MAHMOUDIA, S.; YARIB, M.; MOROSUKC, T.; ROSEND, M.; ZARE, V. A comparative exergoeconomic analysis of two biomass and co-firing combined power plants. Energy Conversion and Management, v. 76, n. 1, p. 83-91, 2013.

VALE, A. T. do; MOREIRA, A. C. de O.; MARTINS, I. S. Avaliação do potencial energético de Bambusa vulgarisem função da idade. Floresta e Ambiente, v. 24, p. 1-9, 2017.

VALE, A.; GENTIL, L.; GONÇALEZ, J.; COSTA, A. Caracterização energética e rendimento de carbonização de resíduos de grãos de café (Coffea arabica, L) e de madeira (Cedrelinga catenaeformis, DUKE). Cerne, v. 13, n. 4, p. 416-420, 2007.

VAKULCHUK, R.; OVERLAND, I.; SCHOLTEN, D. Renewable energy and geopolitics: a review. Renewable and Sustainable Energy Reviews, v. 122, p. 1-12, 2020.

VASSILEV, S.; VASSILEVA, C.; CANÇÃO, Y.; LI, W.; FENG, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel, v. 208, p. 377–409, 2017.

WANG, L.; BARTA-RAJNAI, E.; HU, K.; HIGASHI, C.; SKREIBERG, O.; GRØNLI, M.; CZÉGÉNY, Z.; JAKAB, E.; MYRVÅGNES, V.; VÁRHEGYI, G.; ANTAL, M. Biomass charcoal properties changes during storage. Energy Procedia, v. 105, p. 830-835, 2017.

WORLD ENERGY COUNCIL - WEC. World Energy Trilemma – Index, 2018. UK. Disponível em: <https://www.worldenergy.org/wp-content/uploads/2018/10/World-Energy-Trilemma-Index-2018.pdf>. Acesso em: 30 janeiro 2019.

Published
2020-09-14
Section
Scientific Articles