Traffic of agriculture machinery in oil palm cultivation: implications for physical soil quality

Keywords: Elaeis guineensis Jacq, Soil penetration resistance, Proctor test, Degree of compaction, Mechanized operations

Abstract

Although oil palm is cultivated on a large scale and in different soil types in the state of Pará, changes in the soil’s physical properties in these areas have not been evaluated. Thus, the objective of this study was to evaluate the physical quality of a Yellow Latosol cultivated with oil palm, 30 years after implantation. Soil samples with disturbed and undisturbed structure were collected at 0-20 and 20-40 cm depths, in the machinery traffic zone. The degree of compaction (DC) was calculated from the maximum soil bulk density obtained by the Proctor test, and soil penetration resistance (PR) was determined in soil samples equilibrated in ten matric potentials. Temporal changes in soil moisture in PR were also evaluated. Both parameters showed that the evaluated area has an indication of compaction. The DC in both depths was above 90% and was more severe in the 0-20 cm layer. However, when evaluated by PR, the compaction was more evident in the 20-40 cm layer, and variations in soil moisture over a year showed that in the drier months, the soil showed high values of PR in this layer. Thus, this study indicates that the growth and development of oil palm may be restricted by the soil’s compaction and mainly by the high penetration resistance in the months of reduced water availability.

Downloads

Download data is not yet available.

Author Biography

Sueli Rodrigues, Universidade Federal Rural da Amazônia (UFRA)

Possui graduação em Engenharia Agronômica pela Universidade Estadual Paulista "Júlio de Mesquita Filho" (2008). Mestrado (2010) e doutorado (2014) em Ciências, com área de concentração em Solos e Nutrição de Plantas pela Universidade de São Paulo. Atualmente é pós doutoranda na Universidade Federal Rural da Amazônia (UFRA) no curso de Pós-Graduação em Agronomia. Tem experiência na área de Agronomia, com ênfase em Física do Solo, atuando principalmente nos seguintes temas: qualidade física do solo em sistemas de produção e ambientes naturais, aeração do solo, intervalo hídrico ótimo e permeabilidade do solo ao ar.

References

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Stuttgart, v. 22, n. 6, p. 711-728, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7182: Solo: Ensaio de Compactação. Rio de Janeiro: ABNT, 1986. 11 p.

BETIOLI JÚNIOR, E.; MOREIRA, W. H.; TORMENA, C. A.; FERREIRA, C. J. B.; SILVA, A. P.; GIAROLA, N. F. B. Intervalo hídrico ótimo e grau de compactação de um latossolo vermelho após 30 anos sob plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, v. 36, n. 1, p. 971-982, 2012.

BLAKE, G. R.; HARTGE, K. H. Bulk density. In: KLUTE, A. (ed.). Methods of soil analysis: physical and mineralogical methods. 2. ed. Madison: Soil Science Society of America: American Society of Agronomy, 1986. p. 363-375.

BUSSCHER, W. J. Adjustment of flat-tipped penetrometer resistance data to a common water content. American Society of Agricultural Engineers, Saint Joseph, v. 33, n. 2, p. 519-524, 1990.

COLOMBI, T.; TORRES, L. C.; WALTER, A.; KELLER, T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth: a vicious circle. Science of the Total Environment, Amsterdam, v. 626, n. 1, p. 1026-1035, 2018.

GARDNER, W. H. Water content. In: KLUTE, A. (ed.). Methods of soil analysis: physical and mineralogical methods. 2. ed. Madison: American Society of Agronomy, 1986. p. 493-541.

GEE, G. W.; BAUDER, J. W. Particle-size analysis. In: KLUTE, A. (ed.). Methods of soil analysis: physical and mineralogical methods. 2. ed. Madison: American Society of Agronomy, 1986. p. 383-411.

HÅKANSSON, I. A method for characterizing the state of compactness of the plough layer. Soil and Tillage Research, Amsterdam, v. 16, n. 2, p. 105-120, 1990.

HANSEN, S. B.; PADFIELD, R.; SYAYUTI, K.; EVERS, S.; ZAKARIAH, Z. MASTURA, S. Trends in global palm oil sustainability research. Journal of Cleaner Production, Amsterdam, v. 100, n. 1, p. 140-149, 2015.

KLUTE, A. Water retention: laboratory methods. In: KLUTE, A. (Ed.). Methods of soil analysis: physical and mineralogical methods. 2. ed. Madison: American Society of Agronomy, 1986. p. 635-660.

OLIVEIRA, P. D.; SATO, M. K.; LIMA, H. V.; RODRIGUES, S.; SILVA, A. P. Critical limits of the degree of compactness and soil penetration resistance for the soybean crop in N Brazil. Journal of Plant Nutrition Soil Science, Hoboken, v. 179, n. 1, p. 78-87, 2016.

PASSOS, R. R.; COSTA, L. M.; ASSIS, I. R.; SANTOS, D. A.; RUIZ, H. A.; GUIMARÃES, L. A. O. P.; ANDRADE, F. V. Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces. Institute of Agrophysics, Lublin, v. 31, n. 3, p. 393-400, 2017.

R DEVELOPMENT CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2011.

RHEBERGEN, T.; FAIRHURST, T.; ZINGORE, S.; FISHER M.; OBERTHÜR, T.; WHITBREAD, A. Climate, soil and land-use based land suitability evaluation for oil palm production in Ghana. European Journal of Agronomy, Amsterdam, v. 81, n. 1, p. 1-14, 2016.

SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual de descrição e coleta de solo no campo. 6. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2013. 100 p.

SATO, M. K.; LIMA, H. V.; DE OLIVEIRA, P. D.; RODRIGUES, S. Critical soil bulk density for soybean growth in Oxisols. Institute of Agrophysics, Lublin, v. 29, n. 4, p. 441-447, 2015.

SATO, M. K.; LIMA, H. V.; FERREIRA, R. L. C.; RODRIGUES, S.; SILVA, A. P. Least limiting water range for oil palm production in Amazon region, Brazil. Scientia Agricola, Piracicaba, v. 74, n. 2, p. 148-156, 2017.

SHAH, A. N.; TANVEER, M.; SHAHZAD, B.; YANG, G.; FAHAD, S.; ALI, S.; BUKHARI, M. A.; TUNG, S. A.; HAFEEZ, A.; SOULIYANONH, B. Soil compaction effects on soil health and crop productivity: an overview. Environmental Science and Pollution Research, Basel, v. 24, n. 11, p. 10056-10067, 2017.

SUZUKI, L. E. A. S.; REICHERT, J. M.; REINERT, D. J. Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage. Soil Research, Clayton South, v. 51, n. 4, p. 311-321, 2013.

TORMENA, C. A.; ARAUJO, M. A.; FIDALSKI, J.; COSTA, J. M. Variação temporal do intervalo hídrico ótimo de um Latossolo Vermelho distroférrico sob sistemas de plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, v. 31, n. 2, p. 211-219, 2007.

WALKLEY, A.; BLACK, I. A. An examination of the Degtjareff Method for determining soil organic matter and a proposed modification of the Chromic Acid Titration Method. Soil Science, Alphen aan den Rijn, v. 37, n. 3, p. 29-38, 1934.

WOITTIEZ, L. S.; VAN WIJK, M. T.; SLINGERLAND, M.; VAN NOORDWIJK, M.; GILLER, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. European Journal of Agronomy, Amsterdam, v. 83, n. 1, p. 57-77, 2017.

ZURAIDAH, Y.; HANIFF, M. H.; ZULKIFLI, H. Does soil compaction affect oil palm standing biomass? Journal of Oil Palm Research, Kajang, v. 29, n. 3, p. 352-357, 2017.

ZURAIDAH, Y.; ZULKIFLI, H.; HANIFF, M. H.; NUR ZUHAILI, H. A. Z. A.; NORDIANA, A. A.; SHUIB, A. R.; AFIFAH, A. R.; NUR MAISARAH, J. Alterations of soil physical properties due to mechanization activities under oil palm on Bernam Series soil. International Journal of Agriculture Innovations and Research, Bhopal, v. 3, n. 5, p. 1435-1446, 2015.

Published
2019-02-21
Section
Scientific Articles