Fermentative profile of maize silage inoculated with Lactobacillus buchneri

Keywords: Lactic acid bacteria, Organic acids, Silage additive, Zea mays L.

Abstract

Biological silage additives can assist in making silages by promoting a rapid reduction in silage pH and preventing aerobic deterioration. The current Lactobacillus buchneri on the market produces acetic acid slowly and identifying strains that would improve aerobic stability earlier in the ensiling process would be helpful. This study aimed to investigate the changes in microbial population, dry matter (DM) recovery and fermentation profile of maize silage with or without inoculation with L. buchneri after 45 days of ensiling. The wild L. buchneri strains were isolated from tropical maize silage in a previous study. Four strains of L. buchneri (56.22, 56.27, 56.28 and 56.29) were used as inoculants. Data from the silo openings were analyzed as a completely randomized design, with four replicates per treatment (inoculants). Selected strains did not affect the DM content, yeast and mould population, DM recovery, water-soluble carbohydrates (WSC), lactic acid and butyric acid of maize silage after 45 days of ensiling (p > 0.05). The pH, lactic acid bacteria (LAB) population and concentrations of acetic and propionic acids and ethanol were affected by inoculants (p < 0.05). The strains 56.22, 56.27 and 56.28 showed lower pH than the untreated control silage, but lower acetic acid concentration.

Downloads

Download data is not yet available.

References

ASSIS, F. G. V.; ÁVILA, C. L. S.; PINTO, J. C.; SCHWAN, R. F. New inoculants on maize silage fermentation. Revista Brasileira de Zootecnia, Viçosa, v. 43, n. 8, p. 395-403, 2014. http://dx.doi.org/10.1590/S1516-35982014000800001

CHIBA, S.; CHIBA, H.; YAGI, M. A guide for silage making and utilization in the tropical regions. Tokyo: Japanese Livestock Technology Association, 2005. 29 p.

DOONAN, B. M.; KAISER, A. G.; STANLEY, D. F.; BLACKWOOD, I. F.; PILTZ, J. W.; WHITE, A. K. Silage in the farming system. In: KAISER, A. G.; PILTZ, J. W.; BURNS, H. M.; GRIFFITHS, N. W. (Ed.). Successful silage. Ottawa: NSW Agriculture, 2004. p. 1-24.

DRIEHUIS, F.; OUDE ELFERINK, S. J.; SPOELSTRA, S. F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. Journal of Applied Microbiology, Hoboken, v. 87, n. 4, p. 583-594, 1999. https://doi.org/10.1046/j.1365-2672.1999.00856.x

DRIEHUIS, F.; WILKINSON, J. M.; JIANG, Y.; OGUNADE, I.; ADESOGAN, A. T. Silage review: animal and human health risks from silage. Journal Dairy Science, Amsterdam, v. 101, n. 5, p. 4093-4110, 2018. https://doi.org/10.3168/jds.2017-13728

FILYA, I. The effect of Lactobacillus buchneri, with or without homofermentative lactic-acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. Journal of Applied Microbiology, Hoboken, v. 95, n. 5, p. 1080-1086, 2003. https://doi.org/10.1046/j.1365-2672.2003.02081.x

JOBIM, C. C.; NUSSIO, L. G.; REIS, R. A.; SCHMIDT, P. Methodological advances in evaluation of preserved forage quality. Revista Brasileira de Zootecnia, Viçosa, v. 36, suppl., p. 101-119, 2007. http://dx.doi.org/10.1590/S1516-35982007001000013

KUNG JR, L.; SHAVER, R. D.; GRANT, R. J.; SCHMIDT, R. J. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal Dairy Science, Amsterdam, v. 101, n. 5, p. 4020-4033, 2018. https://doi.org/10.3168/jds.2017-13909

LI, Y.; NISHINO, N. Monitoring the bacterial community of maize silage stored in a bunker silo inoculated with Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. Journal of Applied Microbiology, Hoboken, v. 110, n. 6, p. 1561-1570, 2011. https://doi.org/10.1111/j.1365-2672.2011.05010.x

LIU, S.; SKINNER-NEMEC, K. A.; LEATHERS, T. D. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. Journal of Industrial Microbiology and Biotechnology, Berlin, v. 35, n. 2, p. 75-81, 2008. https://doi.org/10.1007/s10295-007-0267-8

MCDONALD, P.; HENDERSON, A. R.; HERON, S. J. E. The biochemistry of silage. Marlow: Chalcombe, 1991. 340 p.

MUCK, R. E.; NADEAU, E. M. G.; MCALLISTER, T. A.; CONTRERAS-GOVEA, F. E.; SANTOS, M. C.; KUNG JUNIOR, L. Silage review: recent advances and future uses of silage additives. Journal Dairy Science, Amsterdam, v. 101, n. 5, p. 3980-4000, 2018. https://doi.org/10.3168/jds.2017-13839

NELSON, N. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, v. 153, p. 375-380, 1944.

OUDE ELFERINK, S. J. W. H.; DRIEHUIS, F.; GOTTSCHAL, J. C.; SPOELSTRA, S. F. Silage fermentation processes and their manipulation. In: ELECTRONIC CONFERENCE ON TROPICAL SILAGE, 2000, Roma. Proceedings… Roma: FAO. p. 17-30.

OUDE ELFERINK, S. J. W. H.; KROONEMAN, J.; GOTTSCHAL, J. C.; SPOELSTRA, S. F.; FABER, F.; DRIEHUIS, F. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Applied and Environmental Microbiology, Washington, DC, v. 67, n. 1, p. 125-132, 2001. https://doi.org/10.1128/AEM.67.1.125-132.2001

RABELO, C. H. S.; BASSO, F. C.; LARA, E. C.; JORGE, L. G. O.; HÄRTER, C. J.; MARI, L. J.; REIS, R. A. Effects of Lactobacillus buchneri as a silage inoculant or probiotic on in vitro organic matter digestibility, gas production and volatile fatty acids of low dry-matter whole-crop maize silage. Grass and Forage Science, Hoboken, v. 72, n. 3, p. 534-544, 2017. https://doi.org/10.1111/gfs.12273

SCHMIDT, P.; NUSSIO, L. G.; QUEIROZ, O. C. M.; SANTOS, M. C.; ZOPOLLATTO, M.; TOLEDO FILHO, S. G.; DANIEL, J. L. P. Effects of Lactobacillus buchneri on the nutritive value of sugarcane silage for finishing beef bulls. Revista Brasileira de Zootecnia, Viçosa, v. 43, n. 1, p. 8-13, 2014. http://dx.doi.org/10.1590/S1516-35982014000100002

SIEGFRIED, V. R.; RUCKEMANN, H.; STUMPF, G. Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtschaftliche Forsch, Berlin, v. 37, p. 298-304, 1984.

SILVA, L. D.; PEREIRA, O. G.; SILVA, T. C. LEANDRO, E. S.; PAULA, R. A.; SANTOS, S. A.; RIBEIRO, K. G.; VALADARES FILHO, S. C. Effects of Lactobacillus buchneri isolated from tropical maize silage on fermentation and aerobic stability of maize and sugarcane silages. Grass and Forage Science, Hoboken, v. 73, n. 3, p. 660-670, 2018. https://doi.org/10.1111/gfs.12360

TAYLOR, C. C.; KUNG JUNIOR. L. The effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of high moisture corn in laboratory silos. Journal Dairy Science, Amsterdam, v. 85, n. 6, p. 1526-1532, 2002. https://doi.org/10.3168/jds.S0022-0302(02)74222-7

WEIßBACH, F.; STRUBELT, C. Correcting the dry matter content of maize silages as a substrate for biogas production. Landtechnik, Darmstadt, v. 63, n. 4, p. 82-83, 2008. http://dx.doi.org/10.15150/lt.2008.818

ZHOU, Y.; DROUIN, P.; LAFRENIÈRE, C. Effect of temperature (5°C-25°C) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage. Journal of Applied Microbiology, Hoboken, v. 121, n. 3, p. 657-671, 2016. https://doi.org/10.1111/jam.13198

Published
2019-01-30
Section
Scientific Articles