Genetically modified soybean seed selection with bar as marker gene using ammonium glufosinate resistance germination test

  • Mayla Daiane Correa Molinari Embrapa Soja
  • Renata Fuganti-Pagliarini Embrapa Soja
  • Daniel Amorim Barbosa Embrapa Soja
  • Elizandra Carneiro Andreatta Embrapa Soja
  • Alexandre Lima Nepomuceno Embrapa Soja
  • Liliane Marcia Hertz-Henning Embrapa Soja
Keywords: Glycine max, Germination process, Seedling length, Plant survival

Abstract

The objective of this work was to identify promising GM events in a fast and practical manner, in replacement of methodologies based in aerial pulverization in greenhouse and conventional PCR. Eight GM events and their respective conventional isolines were used. Germination and seedling length tests were performed on a paper soaked in an herbicide solution and in the control conditions. To compare the method efficiency, greenhouse tests were carried out, in which the herbicide was applied to plants in the V3 stage. Results obtained indicated that events 2Ia4, 2Oa4, 5Ha10, and 1Ea2939 showed resistance phenotype in both germination and seedling length tests, as well as in plants in the V3 developmental stage. Some GM events (2Ha11, 2Ia1, 3Pa4 and 1Ea15), even with the confirmation of gene bar, were sensible to herbicide. The differences observed in the resistance phenotype of the different GM lineages may be associated with variations in the level of expression of the bar gene, which may vary depending on the insertion position in the host genome. It was possible to conclude that the use of germination and seedling length tests in paper was efficient for selecting GM plants with confirmed results in tests performed in greenhouse with adult plants, showing to be a fast, cheap, and practical methodology, applicable in an early stage, accelerating the screening of promising plants in breeding programs.

Downloads

Download data is not yet available.

References

ÁY, Z.; MIHÁLY, R.; CSERHÁTI, M.; KÓTAI, É.; PAUK, J. The effect of high concentrations of glufosinate ammonium on the yield components of transgenic spring wheat (Triticum aestivum L.) constitutively expressing the bar gene. The Scientific World Journal, v. 2012, 2012. 9 p. doi: 10.1100/2012/657945.

BARBOSA, E. G. G.; LEITE, J. P.; MARIN, S. R. R.; MARINHO, J. P.; CARVALHO F. C. J.; FUGANTI-PAGLIARINI, R.; FARIAS, J. R. B.; NEUMAIER, N.; MARCELINO-GUIMARÃES, F. C.; OLIVEIRA, M. C. N.; YAMAGUCHI-SHINOZAKI, K.; NAKASHIMA, K.; MARUYAMA, K.; KANAMORI, N.; FUJITA, Y.; YOSHIDA, T.; NEPOMUCENO, A. L. Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Molecular Biology Reporter, v. 31, n. 3, p. 719-730, 2013. doi:10.1007/s11105-012-0541-4.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS, 2009. 399p.

BRUNHARO, C. A. A. C. G.; CHRISTOFFOLETI, P. J.; NICOLAI, M. Aspectos do mecanismo de ação do amônio glufosinato: culturas resistentes e resistência de plantas daninhas. Revista Brasileira de Herbicidas, v. 13, n. 2, p. 163-177, 2014. doi: 10.7824/rbh.v13i2.293.

CANTERI, G. M.; ALTHAUS, A. R.; FILHO S. V. J.; GIGLIOTI, A. E.; GODOY, V. C. SASM-Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação, v. 1, n. 2, p. 18-24, 2001. Disponível em: <https://bit.ly/2ySSnUm>. Acesso em: 15 abr. 2018.

CARBONARI, C. A.; LATORRE, D. O.; GOMES, G. L.; VELINI, E. D.; OWENS, D. K.; PAN, Z.; DAYAN, F. E. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® cotton. Planta, v. 243, n. 4, p. 925-933, 2016. doi: 10.1007/s00425-015-2457-3.

CUNHA, C. D. S. M.; TILLMANN, M. Â. A.; VILLELA, F. A.; DODE, L. B.; BALERINI, F. Comparison of methods to detect genetically modified soybean seeds resistant to glyphosate. Revista Brasileira de Sementes, v. 27, n. 1, p. 167-175, 2005. doi: 10.1590/S0101-31222005000100021.

CUI, Y.; LIU, Z.; LI, Y.; ZHOU, F.; CHEN, H.; LIN, Y. Application of a novel phosphinothricin N-acetyltransferase (RePAT) gene in developing glufosinate-resistant rice. Scientific Reports, v. 6, p. 1-10, 2016. Disponível em: <https://bit.ly/2RAtALC>. Acesso em: 15 abr. 2018.

DITA, M.A.; RISPAIL, N.; PRATS, E.; RUBIALES, D.; SINGH, K.B. Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, v. 147, n. 1-2, p. 1-24, 2006. doi: 10.1007/s10681-006-6156-9.

EVERMAN, W. J.; MAYHEW, C. R.; BURTON, J. D.; YORK, A. C.; WILCUT, J. W. Absorption, translocation, and metabolism of 14C-glufosinate in glufosinate-resistant corn, goosegrass (Eleusine indica), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed science, v. 57, n. 1, p. 1-5, 2009. doi: 10.1614/WS-08-089.1.

FEHR, W. R.; CAVINESS, C. E. Stages of soybean development. Ames: lowa State University of Science and Technology, 1977. 11 p. Disponível em: <https://lib.dr.iastate.edu/specialreports/87>. Acesso em: 15 abr. 2018.

FARTYAL, D.; AGARWAL, A.; JAMES, D.; BORPHUKAN, B.; RAM, B.; SHERI, V.; REDDY, M. K. Developing dual herbicide tolerant transgenic rice plants for sustainable weed management. Scientific reports, v. 8, n. 1, p. 1-12, 2018. doi: 10.1038/s41598-018-29554-9.

HONNA, P. T.; FUGANTI-PAGLIARINI, R. ; FERREIRA, L. C.; MOLINARI, M. D. C.; MARIN, S. R. R.; DE OLIVEIRA, M. C. N.; FARIAS, J. R. B. ; NEUMAIER, N. ; MERTZ-HENNING, L. M.; KANAMORI, N.; NAKASHIMA, K.; TAKASAKI, H.; URANO, K.; SHINOZAKI, K.; YAMAGUCHI-SHINOZAKI, K.; DESIDÉRIO, J. A.; NEPOMUCENO, A. L. Molecular, physiological and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance. Molecular Breeding, v. 36, n. 11, 2016. Disponível em: <https://bit.ly/2PLAqRe>. Acesso em: 15 abr. 2018.

LEITE, J. P.; BARBOSA, E. G. G.; MARIN, S. R. R.; MARINHO, J. P.; CARVALHO, J. F. C.; FUGANTI-PAGLIARINI, R.; CRUZ, A. S.; FARIAS, J. R. B. F.; NEUMAIER, N.; GUIMARAES, F. C. M.; YOSHIDA, T.; KANAMORI, N.; FUJITA, Y.; NAKASHIMA, K. Y.; SHINOZAKI, K. Y.; DESIDÉRIO, J. A.; NEPOMUCENO, A. L. Overexpression of the activated form of the AtAREB1 gene (AtAREB1 Delta QT) improves soybean responses to water deficit. Genetics and Molecular Research, p. 6272-6286, 2014. doi: 10.4238/2014.August.15.10.

LILGE, C. G.; TILLMANN, M. Â. A.; VILLELA, F. A.; DODE, L. B. Identification of genetically modified rice seeds resistant to ammonium gluphosinate herbicide. Revista Brasileira de Sementes, v. 25, n. 1, p. 87-94, 2003. doi: 10.1590/S0101-31222003000100014.

LI, S.; CONG, Y.; LIU, Y.; WANG, T.; SHUAI, Q.; CHEN, N.; LI, Y. Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, v. 8, 2017. doi: 10.3389/fpls.2017.00246.

MARINHO, J. P.; KANAMORI, N.; FERREIRA, L. C.; FUGANTI-PAGLIARINI, R.; CARVALHO, J. F. C.; FREITAS, R. A.; MARIN, S. R. R.; RODRIGUES, F. A.; MERTZ-HENNING, L. M.; FARIAS, J. R.; NEUMAIER, N.; OLIVEIRA, M. C. N.; MARCELINO-GUIMARÃES, F. C.; YOSHIDA, T.; FUJITA, Y.; SHINOZAKI-YAMAGUCHI, K.; NAKASHIMA, K.; NEPOMUCENO, A.L. Characterization of molecular and physiological responses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Molecular Biology Reporter, v. 34, n. 2, p. 410-426, 2016. doi: 10.1007/s11105-015-0928-0.

MIRANDA, D. M. D.; TILLMANN, M. Â. A.; BALERINI, F.; VILLELA, F. A. Bioassays on the detection and quantification of genetically modified soybean resistant to glyphosate. Revista Brasileira de Sementes, v. 27, n. 1, p. 93-103, 2005. doi: 10.1590/S0101-31222005000100012.

NAKAMURA, S.; MANO, S.; TANAKA, Y.; OHNISHI, M.; NAKAMORI, C.; ARAKI, M.; NIWA, T. NISHIMURA, M.; KAMINAKA, H.; NAKAGAWA, T.; SATO Y.; ISHIGURO, S. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Bioscience, Biotechnology and Biochemistry, v. 74, n. 6, p. 1315-1319, 2010. doi: 10.1271/bbb.100184.

NARULA, A.; ARORA, L. Gene editing and crop improvement using CRISPR-Cas9 system. Frontiers in plant science, v. 8, 2017. doi: 10.3389/fpls.2017.01932.

PAWLOWSKI, W. P.; SOMERS, D. A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Molecular Biotechnology, v. 6, n. 1, p. 17-30, 1996. Disponível em: <https://bit.ly/2JJPSbl>. Acesso em: 15 abr. 2018.

SOUZA JÚNIOR, M. T.; VENTUROLI, M. F.; COELHO, M. C. F.; RECH FILHO, E. L. Analysis of marker gene/selective agent systems alternatives to positive selection of transgenic papaya (Carica papaya L.) somatic embryos. Revista Brasileira de Fisiologia Vegetal, v. 13, n. 3, p. 365-372, 2001. doi: 10.1590/S0103-31312001000300011.

THOMPSON, C.J.; MOVVA, N.R.; TIZARD, R.; CRAMERI, R.; DAVIES, J.E.; LAUWEREYS, M.; BOTTERMAN, J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO journal, v. 6, n. 9, p. 2519-2523, 1987. doi: 10.1002/j.1460-2075.1987.tb02538.x.

VAZQUEZ, G. H.; CARVALHO, N. M.; BORBA, M. M. Z. Effects of plant population reductions on yield and seed physiological quality of soybeans. Revista Brasileira de Sementes, v. 30, n. 2, p. 1-11, 2008. doi: 10.1590/S0101-31222008000200001.

WANG, W.Z.; YANG, B.P.; FENG, C.L.; WANG, J.G.; XIONG, G.R.; ZHAO, T.T.; ZHANG, S.Z. Efficient sugarcane transformation via bar gene selection. Tropical Plant Biology, v. 10, n. 2-3, p. 77-85, 2017. doi: 10.1007/s12042-017-9186-7.

Published
2018-12-04
Section
Scientific Articles