Thermochemical transformation of the oil palm mesocarp cake to produce biofuel

Keywords: Cracking; thermal processing; lignocellulosic material, biomass, palm oil

Abstract

Currently the productive chain of oil palm as been expanding rapidly in the northern region of Brazil, causing a large production of solid and liquid wastes. The use of this material as biomass for the production of biofuels through thermal processing is one of the viable alternative for reducing the environmental impact and enhancing the productive chain of oil palm. Among these, there is the oil palm mesocarp cake (OPMC) which represents approximately 25% w/w of the fruit. The purpose of this study was to investigate the effect of the temperature on the characteristics of the products obtained through thermochemical transformations of the OPMC. The experiments have been carried out at temperatures between 150 and 550ºC by using a 7.5 cm diameter and 10 cm height stainless steel reactor, with volumetric capacity of 440 cm³ and heated by 1.5 kW electrical resistance. The analysis showed that the OPMC is a lignocellulosic material with 45% of cellulose, 21% of hemicellulose and 34% of lignin, and with calorific value of 22.5 MJ/kg. The results show that the liquid and gas yields increase with the operation temperature, while the solid product decrease. The liquid products formed showed a similarity in the composition for the different operation temperatures, but the solids had a significant increase in the fixed carbon content with the temperature. In the solid products, the highest rate of degradation of hemicellulose and cellulose occurred in temperatures up to 250 ºC, with prevalence of lignin in the products obtained at highest temperatures.

Downloads

Download data is not yet available.

References

BRIDGWATER, A.V.; PEACOCKE, G. V. C. 2000. Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, v. 4, p. 1–73, 2000.

BRIDGWATER, A. V.; TOFT, A. J.; BRAMMER, J. G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable & Sustainable, v 6, p. 181-246, 2002.

COSTA, M. R. T.; HOMMA, A. K. O.; REBELLO, F. K.; SOUZA FILHO, A. P. S.; FERNANDES, A. L. C.; BALEIXE, W. Atividade agropecuária no Estado do Pará. Ed. Embrapa Amazonia Oriental, 2017. 174p. Disponível em: https://www.embrapa.br/amazonia-oriental/publicações

GUEDES, C. L. B.; ADÃO, D. C.; QUESSADA, T. P.; BORSATO, D.; GALÃO, O. F.; MAURO, E.D.; PÉREZ, J. M. M.; ROCHA, D. Avaliação de biocombustível derivado do bio-óleo obtido por pirólise rápida de biomassa lignocelulósica como aditivo para gasolina. Química Nova, v.33, n.4, p.781-786, 2010.

HOSSAIN, A. K.; DAVIES, P. A. Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review. Renewable and Sustainable Energy Reviews, v. 21, p. 165-189, 2013.

HUBER, G. W. S.; IBORRA, A. Corma Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chemical Reviews, v.106, p. 4044–4098, 2006.

KAN, T. N.; STREZOV, V.; EVANS, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, v. 57, p.1126–1140, 2016.

MOHAN, D.; PITTMAN, C. U.; STEELE, P. H. Pyrolysis of wood/biomass for bio-oil. A critical review. Energy & Fuels, v. 20, p. 848-889, 2006.

ORTIZ, L. A.; SEGURA, N.F. J.; JABALERA, S. R.; PAULA, M. M.; CAMPO, D. A. E.; GUTIÉRREZ, S. J.; BRETADO, E. A. M.; MARTÍNEZ, C. V. Low temperature sugar cane bagasse pyrolysis for the production of high purity hydrogen through steam reforming and CO2 capture. International Journal of Hydrogen Energy, v. 38, p. 12580–12588, 2013.

PLIS, A.; LASEK, J.; SKAWINSKA, A.; ZUWAŁA, J. Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae. Journal of Analytical and Applied Pyrolysis, v. 115, p. 166–174, 2015.

PROTÁSIO, T. P.; TONOLI, G. H. D.; JÚNIOR, M.G.; BUFALINO, L.; COUTO, A. M.; TRUGILHO, P.F. Correlações canônicas entre as características químicas e energéticas de resíduos lignocelulósico. Cerne, Lavras, v. 18, p. 433-439, 2012.

QU, T. T.; GUO, W.J.; SHEN, L.H.; XIAO, J.; ZHAO, K. Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Industrial and Engineering Chemistry Research, v. 50, p. 10424-10433, 2011.

RAZUAN, R.; FINNEY, K. N.; CHEN, Q.; SHARIFI, V. N.; SWITHENBANK, J. Pelletised fuel production from palm kernel cake. Fuel Processing Technology, v. 92, p. 609–615, 2011.

SANTOS, F. A.; QUEIRÓZ, J. H.; COLODETTE, J. L.; FERNANDES, S. A.; GUIMARÃES, V.M.; REZENDE, S.T. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, v. 35, n. 5, p. 1004-1010, 2012.

SHINOJ, S.; VISVANATHAN, R.; PANIGRAHI, S.; KOCHUBABU, M. Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, v. 33, p. 7-22. 2011.

STEFANIDIS, S. D.; KALOGIANNIS, K. G.; ILIOPOULOU, E. F; MICHAILOF, C. M.; PILAVACHI, P. A.; LAPPAS, A. A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, v. 105, p. 143-150, 2014.

SUBRAMANI, V.S.; GANGWAL, K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy & Fuels, v. 22, p. 814–839, 2008.

SULAIMAN, F.; ABDULLAH, N. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy, v. 36, p. 2352-2359, 2011.

VAN SOEST, P.J. Use of detergents in the analyses of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analitical Chemistry, v. 46, p.829-835, 1963.

VAN SOEST, P.J.; WINE, R.H. Use of detergents in the analysis of fibrous feeds. 4. Determination of plant cell wall constituents. Journal of the Association of Official Analitical Chemistry, v. 50, p. 50-55, 1967.

WILLIAMS, P. T.; BESLER, S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy, v. 7, p. 233–250, 1996.

YANG, H. P R.; YAN, H. P.; CHEN, D. H.; LEE, C. G.; ZHENG. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, v. 86, p. 1781–1788, 2007.

Thomsen, T.; Hauggaard-Nielsen, H.; Bruun, E. W.; Ahrenfeldt. J. The potential of pyrolysis technology in climate change mitigation influence of process design and parameters simulated in SuprPro Designer Software. Technical University of Denmark, 2011.

ZHANG, L.; LIU, R.; YIN, R.; MEI, Y. Upgrading of bio-oil from biomass fast pyrolysis in China: A review. Renewable and Sustainable Energy Reviews, v. 24, p. 66–72, 2013.

Published
2018-12-27
Section
Scientific Articles