Uso da espectroscopia do infravermelho próximo na avaliação de forragens para ruminantes

Palavras-chave: Composição química, Digestibilidade, NIRS fecal, Consumo, NIRS

Resumo

Espectroscopia do infravermelho próximo (NIRS) é uma tecnologia que tem sido aplicada na avaliação da qualidade da forragem de ruminantes. Neste artigo é descrito de que forma a técnica NIRS tem sido aplicada na avaliação de forragens frescas em pasto ou secas e moídas, tanto com o equipamento de bancada no laboratório quanto com o equipamento portátil e sua utilização em drones e tratores, por exemplo. A tecnologia tem sido amplamente implementada na avaliação da composição química (matéria seca, proteína bruta, fibra em detergente neutro e ácido, lignina, extrato etéreo), da digestibilidade, da produção de gás, do consumo e de outros parâmetros de qualidade da forragem, com os benefícios de não destruir amostras, não utilizar reagentes, fornecer rápido resultado das análises, entre outros.

Downloads

Não há dados estatísticos.

Referências

ANDRÉS, S.; MURRAY, I.; CALLEJA, A.; JAVIER GIRALDEZ, F. Prediction of gas production kinetic parameters of forages by chemical composition and near infrared reflectance spectroscopy. Animal Feed Science and Technology, Amsterdam, v. 123-124, p. 487-499, 2005. doi: 10.1016/j.anifeedsci.2005.04.043.

ANDREU-RODRÍGUEZ, J.; PÉREZ-ESPINOSA, A.; MORAL, R.; AGULLÓ, E.; FERRÁNDEZ-VILLENA, M.; FERRÁNDEZ-GARCÍA, M.; BUSTAMANTE, M. Near infrared reflectance spectroscopy (NIRS) for the assessment of biomass production and C sequestration by Arundo donax L. in salt-affected environments. Agricultural Water Management, Amsterdam, v. 183, p. 94-100, 2017. doi: 10.1016/j.agwat.2016.10.005.

ANDUEZA, D.; PICARD, F.; MARTIN-ROSSET, W.; AUFRÈRE, J. Near-Infrared Spectroscopy Calibrations Performed on Oven-Dried Green Forages for the Prediction of Chemical Composition and Nutritive Value of Preserved Forage for Ruminants. Applied Spectroscopy, Thousand Oaks, v. 70, n. 8, p. 1321-1327, 2016. doi: 10.1177/0003702816654056.

BENVENUTTI, M. A.; COATES, D. B.; BINDELLE, J.; POPPI, D. P.; GORDON, I. J. Can faecal markers detect a short term reduction in forage intake by cattle? Animal Feed Science and Technology, Amsterdam, v. 194, p. 44-57, 2014. doi: 10.1016/j.anifeedsci.2014.05.002.

BEZADA, S. Q.; ARBAIZA, T. F.; CARCELÉN, F. C.; SAN MARTÍN, F. H.; LÓPEZ, C. L.; ROJAS, J. E.; RIVADENEIRA, V.; ESPEZÚA, O. F.; GUEVARA, J. V.; VÉLEZ, V. M. Predicción de la composición química y fibra detergente neutro de Rye Grass Italiano (Lolium multiflorum Lam) mediante espectroscopía de reflectancia en infrarrojo cercano (NIRS). Revista de Investigaciones Veterinarias del Perú, Lima, v. 28, n. 3, p. 538-548, 2017. doi: 10.15381/rivep.v28i3.13357.

BOSCHMA, S. P.; MURPHY, S. R.; HARDEN, S. Growth rate and nutritive value of sown tropical perennial grasses in a variable summer-dominant rainfall environment, Australia. Grass and Forage Science, Hoboken, v. 72, p. 234-247, 2017. doi: 10.1111/gfs.12237.

BROGNA, N.; PALMONARI, A.; CANESTRARI, G.; MAMMI, L.; DAL PRÀ, A.; FORMIGONI, A. Technical note: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. Journal of Dairy Science, Amsterdam, v. 101, n. 2, p. 1234-1239, 2018. doi: 10.3168/jds.2017-13319.

CASTRO, P. Use of near infrared reflectance spectroscopy (NIRS) for forage analysis. In: FISHER, G.; FRANKOW-LINDBERG, B. (org.). Lowland and Grasslands of Europe: utilization and development. Rome: Food and Agriculture Organization of the United Nations, 2002. 282 p.

CASTRO, P.; FERNÁNDEZ-LORENZO, B.; VALLADARES Y. J. Análisis de pastos mediante NIRS. In: REUNIÓN CIENTÍFICA DE LA SEEP, 45., 2005, Gijón. Asturias: Serida, 2005. p. 73-38.

COATES, D. B.; DIXON, R. M. Developing robust faecal near infrared spectroscopy calibrations to predict diet dry matter digestibility in cattle consuming tropical forages. Journal of Near Infrared Spectroscopy, Thousand Oaks, v. 19, n. 6, p. 507-519, 2011. doi: 10.1255/jnirs.967.

COZZOLINO, D. Applied spectroscopy reviews use of infrared spectroscopy for in- field measurement and phenotyping of plant properties: instrumentation, data analysis, and examples use of infrared spectroscopy for in-field measurement and phenotyping of plant properties. Applied Spectroscopy Reviews, Abingdon, v. 49, p. 564-584, 2014. doi: 10.1080/05704928.2013.878720.

COZZOLINO, D.; LABANDERA, M. Determination of dry matter and crude protein contents of undried forages by near-infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, Hoboken, v. 82, p. 380-384, 2002. doi: 10.1002/jsfa.1050.

DE BOEVER, J. L.; COTTYN, B. G.; DE BRABANDER, D. L.; VANACKER, J. M.; BOUCQUÉ, C. V. Prediction of the feeding value of maize silages by chemical parameters, in vitro digestibility and NIRS. Animal Feed Science and Technology, Amsterdam, v. 66, n. 939, p. 211-222, 1997. doi: 10.1016/S0377-8401(96)01101-7.

DECRUYENAERE, V.; PLANCHON, V.; DARDENNE, P.; STILMANT, D. Prediction error and repeatability of near infrared reflectance spectroscopy applied to faeces samples in order to predict voluntary intake and digestibility of forages by ruminants. Animal Feed Science and Technology, Amsterdam, v. 205, n. 205, p. 49-59, 2015. doi: 10.1016/j.anifeedsci.2015.04.011.

DIXON, R.; COATES, D. Review: near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. Journal of Near Infrared Spectroscopy, Thousand Oaks, v. 17, n. 1, p. 1-31, 2009. doi: 10.1255/jnirs.822.

DURMIC, Z.; RAMÍREZ-RESTREPO, C. A.; GARDINER, C.; O’NEILL, C. J.; HUSSEIN, E.; VERCOE, P. E. Differences in the nutrient concentrations, in vitro methanogenic potential and other fermentative traits of tropical grasses and legumes for beef production systems in northern Australia. Journal of the Science of Food and Agriculture, Hoboken, v. 97, n. 12, p. 4075-4086, 2017. doi: 10.1002/jsfa.8274.

FAN, X.; KAWAMURA, K.; GUO, W.; XUAN, T. D.; LIM, J.; YUBA, N.; KUROKAWA, Y.; OBITSU, T.; LV, R.; TSUMIYAMA, Y.; YASUDA, T.; WANG, Z. A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass. Computers and Electronics in Agriculture, Amsterdam, v. 144, p. 314-323, 2018. doi: 10.1016/j.compag.2017.11.025.

FERNANDES, A. M. F. Uso da espectroscopia de reflectância do infravermelho próximo (NIRS) para previsão da composição bromatológica de vagens de algaroba e palma forrageira. 2015. 106 f. Dissertação (Mestrado em Zootecnia) – Universidade Estadual Vale do Acaraú, Sobral, 2015.

GARCIA, J.; COZZOLINO, D. Use of near infrared reflectance (NIR) spectroscopy to predict chemical composition of forages in broad-based calibration models. Agricultura Técnica, Chillán, v. 66, n. 1, p. 41-47, 2006. doi: 10.4067/S0365-28072006000100005.

GOERING, H. K.; VAN SOEST, P. J. Forage fiber analysis. Washington DC: United States Department of Agriculture, 1970. 379 p. (Agriculture Handbooks).

HERRERO, M.; MURRAY, I.; FAWCETT, R. H.; DENT, J. B. Prediction of the in vitro gas production and chemical composition of kikuyu grass by near-infrared reflectance spectroscopy. Animal Feed Science Technology, Amsterdam, v. 60, n. 60, p. 51-67, 1996. doi: 10.1016/0377-8401(95)00924-8.

HUNT, E. R.; DEAN HIVELY, W.; FUJIKAWA, S. J.; LINDEN, D. S.; DAUGHTRY, C. S. T.; MCCARTY, G. W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing, Basel, v. 2, n. 1, p. 290-305, 2010. doi: 10.3390/rs2010290.

IBÁÑEZ, L. S.; ALOMAR, D. Prediction of the chemical composition and fermentation parameters of pasture silage by near infrared reflectance spectroscopy (NIRS). Chilean Journal of Agricultural Research, Chillán, v. 68, n. 4, p. 352-359, 2008. doi: 10.4067/S0718-58392008000400005.

JANCEWICZ, L. J.; SWIFT, M. L.; PENNER, G. B.; BEAUCHEMIN, K. A.; KOENIG, K. M. Development of NIRS calibrations to estimate fecal composition and nutrient digestibility in beef cattle. Canadian Journal of Animal Science, Toronto, v. 403, p. 1-33, 2016.

KNEEBONE, D. G.; DRYDEN, MCL, G. Prediction of diet quality for sheep from faecal characteristics: comparison of near-infrared spectroscopy and conventional chemistry predictive models. Animal Production Science, Clayton, v. 55, p. 1-10, 2015. doi: 10.1071/AN13252.

LANDAU, S.; GLASSER, T.; DVASH, L. Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: a review. Small Ruminant Research, Amsterdam, v. 61, p. 1-11, 2006. doi: 10.1016/j.smallrumres.2004.12.012.

LUGASSI, R.; CHUDNOVSKY, A.; ZAADY, E.; DVASH, L.; GOLDSHLEGER, N.; BEN-DOR, E.; SARATHI ROY, P.; THENKABAIL, P. S. Estimating pasture quality of fresh vegetation based on spectral slope of mixed data of dry and fresh vegetation:method development. Remote Sensing, Basel, v. 7, p. 8045-8066, 2015. doi: 10.3390/rs70608045.

MARTEN, G.; SHENK, J.; BARTON, F. Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. Washington, DC: United States Department of Agriculture, 1989. 643 p. (Agriculture Handbooks).

MAURÍCIO, R. M.; GUSTAVO, L.; PEREIRA, R.; GONÇALVES, L. C.; RODRIGUEZ, N. M.; GALVÃO, R.; MARTINS, R.; AVELINO, J.; RODRIGUES, S. Potencial da técnica in vitro semi-automática de produção de gases para avaliação de silagens de sorgo (Sorghum bicolor (L.) Moench). Revista Brasileira de Zootecnia, Viçosa, v. 32, n. 4, p. 1013-1020, 2003. doi: 10.1590/S1516-35982003000400029.

MENDARTE, S.; IBARRA, A.; GARBISU, C.; BESGA, G.; ALBIZU, I. Use of portable NIRS equipment in field conditions to determine the nutritional value of mountain pastures. Grassland Science in Europe, Zurich, v. 15, p. 244-246, 2010.

MOLANO, M. L.; CORTÉS, M. L.; ÁVILA, P.; MARTENS, S. D.; MUÑOZ, L. S. Ecuaciones de calibración en espectroscopía de reflectancia en el infrarrojo cercano (NIRS) para predicción de parámetros nutritivos en forrajes tropicales. Tropical Grasslands-Forrajes Tropicales, Cali, v. 4, n. 3, p. 139-145, 2016. doi: 10.17138/tgft(4)139-145.

MURRAY, I. Forage analysis by near infrared spectroscopy. In: DAVIES, A., BAKER, R. D., GRANT, S. A., LAIDLAW, A. S. (eds.). Sward management handbook. 2. ed. Reading, UK: The British Grassland Society, 1993. p. 285-312.

NORRIS, K. H.; BARNES, R. F.; MOORE, J. E.; SHENK, J. S. Predicting forage quality by infrared replectance spectroscopy. Journal of Animal Science, Champaign, v. 43, n. 4, p. 889-897, 1976. doi: 10.2527/jas1976.434889x.

OSBORNE, B. Near-infrared spectroscopy in food analysis. In: MEYERS, R. A. (ed.). Encyclopedia of analytical chemistry. Chichester, UK: John Wiley & Sons, 2000. p. 1-14.

PARRINI, S.; ACCIAIOLI, A.; CROVETTI, A.; BOZZI, R. Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Italian Journal of Animal Science, Abingdon, v. 17, n. 1, p. 87-91, 2018. doi: 10.1080/1828051X.2017.1345659.

RAMANZIN, M.; ÁNGELES, M.; AGUADO, P.; FERRAGINA, A.; STURARO, E.; SEMENZATO, P.; SERRANO, E.; CLAUSS, M.; ALBANELL, E.; CASSINI, R.; BITTANTE, G. Methodological considerations for the use of faecal nitrogen to assess diet quality in ungulates: the Alpine ibex as a case study. Ecological Indicators, Amsterdam, v. 82, p. 399-408, 2017. doi: 10.1016/j.ecolind.2017.06.050.

REDDERSEN, B.; FRICKE, T.; WACHENDORF, M. Effects of sample preparation and measurement standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive experimental grassland biomass. Animal Feed Science and Technology, Amsterdam, v. 183, p. 77-85, 2013. doi: 10.1016/j.anifeedsci.2013.04.016.

PUJOL, S.; PÉREZ-VENDRELL, A. M.; TORRALLARDONA, D. Evaluation of prediction of barley digestible nutrient content with near-infrared reflectance spectroscopy (NIRS). Livestock Science, Amsterdam, v. 109, p. 189-192, 2007. doi: 10.1016/j.livsci.2007.01.144.

SAARI, H.; AKUJÄRVI, A.; HOLMLUND, C.; OJANEN, H.; KAIVOSOJA, J.; NISSINEN, A.; NIEMELÄINEN, O. Visible, very near ir and short wave ir hyperspectral drone imaging system for agriculture and natural water applications. Remote Sensing and Spatial Information Sciences, Jyväskylä, v. XLII-3/W3, p. 165-170, 2017. doi: 10.5194/isprs-archives-XLII-3-W3-165-2017.

SHENK, J. S.; WESTERHAUS, M. O. Near infrared reflectance analysis with single- and multiproduct calibrations. Crop Science, Madison, v. 33, n. 3, p. 582-584, 1993. doi: 10.2135/cropsci1993.0011183X003300030032x.

SIMEONE, M. L.; SOUZA, G. B.; GONTIJO NETO, M. M.; GUIMARÃES, C. C.; MEDEIROS, E.; BARROCAS, G. E. G.; PASQUINI, C. Use of NIR and PLS to Predict Chemical Composition of Brachiaria. In: INTERNATIONAL CONFERENCE ON NEAR INFRARED SPECTROSCOPY, 17., 2015, Foz do Iguaçu. Foz do Iguaçu: ICNIS, 2015. p. 195. Poster presentation.

SINNAEVE, G.; DARDENNE, P.; AGNEESSENS, R. Global or local? A choice for NIR calibrations in analyses of forage quality. Journal of Near Infrared Spectroscopy, Thousand Oaks, v. 2, p. 163-175, 1994. doi: 10.1255/jnirs.43.

STUTH, J.; JAMA, A.; TOLLESON, D. Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Research, Amsterdam, v. 84, p. 45-56, 2003. doi: 10.1016/S0378-4290(03)00140-0.

TASSONE, S.; MASOERO, G.; PEIRETTI, P. G. Vibrational spectroscopy to predict in vitro digestibility and the maturity index of different forage crops during the growing cycle and after freeze- or oven-drying treatment. Animal Feed Science and Technology, Amsterdam, v. 194, p. 12-25, 2014. doi: 10.1016/j.anifeedsci.2014.04.019.

TILLEY, J. M. A.; TERRY, R. A. A Two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, Hoboken, v. 18, n. 2, p. 104-111, 1963. doi: 10.1111/j.1365-2494.1963.tb00335.x.

ULLMANN, I.; HERRMANN, A.; HASLER, M.; TAUBE, F. Influence of the critical phase of stem elongation on yield and forage quality of perennial ryegrass genotypes in the first reproductive growth. Field Crops Research, Amsterdam, v. 205, p. 23-33, 2017. doi: 10.1016/j.fcr.2017.02.003.

ZHANG, X.; HAUSE, B.; YANG, Z.; NIE, G.; PAN, L.; ZHANG, Y.; HUANG, L.; MA, X. Development and validation of near-infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ, San Diego, v. 5, e3867, 2017. doi: 10.7717/peerj.3867.

Publicado
2019-03-13
Seção
Artigos de Revisão